Anaktuvuk Pass Wind Resource Report

Report by: Douglas Vaught, P.E., V3 Energy, LLC, Eagle River, Alaska Date of Report: August 26, 2010

Anaktuvuk Pass met tower; D. Vaught photo

Contents

Summary	2
Test Site Location	2
Tower Sensor Information	3
Photographs	4
Data recovery	4
Vind Speed	5
Daily Wind Profile	7
Probability Distribution Function	8
Wind Shear and Roughness	8
Extreme Winds	10
emperature and density	11
Air density DMap	12

Wind Speed Scatterplot12
Wind Direction
Turbulence
Airport ASOS Data

Summary

The wind resource measured in Anaktuvuk Pass is somewhat low by most standards of wind power development with projected wind power class 2 (marginal). But, the viability of wind power in a remote community is primarily dependent on the cost of fuel for electricity generation. Given the very high cost of diesel fuel in Anaktuvuk Pass, the economics of wind development may well be favorable.

Met tower data synopsis

Data dates	June 28, 2009 to July 21, 2010 (13 months)
Wind power class	Class 2 (marginal)
Power density mean, 30 m	170 W/m ²
Wind speed mean, 30 m	5.15 m/s
Max. 10-min wind speed average	18.8 m/s
Maximum wind gust	20.8 m/s (Aug. 2009)
Weibull distribution parameters	k = 1.88, c = 5.78 m/s
Temperature average	-7.1° C, to date
Wind shear power law exponent	0.163 (moderate)
Roughness class	0.47 (snow surface)
Turbulence intensity, mean	0.050 (at 15 m/s)
IEC3 turbulence category	C (lowest)
Calm wind frequency	36% (<3.5 m/s)

Community profile

Current Population:	287 (2009 DCCED Certified Population)
Incorporation Type:	2nd Class City
Borough Located In:	North Slope Borough
Taxes:	Sales: None, Property: 18.5 mills (Borough), Special: None
Coastal Management District:	North Slope Borough

Test Site Location

Met tower was installed on a prominent hill above the power plant and behind (southwest) of the school. Given the geographic constraints of the valley and location and orientation of the airport, this site is the only viable location for wind power development. It has the considerable advantage of very close proximity to the power plant and very good exposure to winds from all directions.

Site Information

Site number	0225
Site description	Southwest edge of village; west of airport runway
Latitude/longitude	N 68° 08.353' W 151° 44.631', WGS 84
Site elevation	668 meters
Datalogger type	NRG Symphonie, 10 minute time step
Tower type	NRG 34-meter tall tower, 152 mm diameter, erected to 30 m
Anchor type	1.5 m screw-in

Google Earth image

Tower Sensor Information

Channel Sensor type		Height	Multiplier	Offset	Orientation
1	NRG #40 anemometer	30 m (A)	0.756	0.42	179° T
2	NRG #40 anemometer	30 m (B)	0.756	0.38	272° T
3	NRG #40 anemometer	20 m	0.759	0.34	272° T
7	NRG #200P wind vane	29 m	0.351	358	358° T
9	NRG #110S Temp C	3 m	0.136	-86.383	Ν
10	RH-5 relative humidity	2 m	0.098	0	S
12	Voltmeter	2 m	0.021	0	n/a

Photographs


Top of tower and obstruction balls; D. Vaught photo

View from site southeast to powerplant; D. Vaught photo

Datalogger weather box and PV panel; D. Vaught photo

View from site northeast to village; D. Vaught photo

Data recovery

Data recovery of the Anaktuvuk Pass met tower was generally good, except for three long periods of data loss: 10/27 thru 11/5, 12/10 thru 12/18, and 2/21 thru 3/7. In all three circumstances, the cause appears to be icing conditions. During the first data loss event, however, the anemometers were non-functional yet the wine vane returned data and the RH sensor indicated lower than expected humidity for an icing event. For the other two data loss events, loss of wind vane data appears to confirm icing, but a non-functional RH sensor (due to voltage drawdown of the iPack battery from lack of sunlight) does not allow confirmation of the high humidity typical of rime icing conditions. Given the very cold temperatures during the three data loss periods and the location of Anaktuvuk Pass well away from the coast, the icing losses are undoubtedly due to hoarfrost conditions and not rime icing.

Data recovery summary table

		Possible	Valid	Recovery
Label	Units	Records	Records	Rate (%)
Speed 30 A	m/s	55844	50,554	90.5
Speed 30 B	m/s	55844	50,641	90.7
Speed 20	m/s	55844	50,897	91.1
Direction 29	0	55844	51,924	93.0
Temperature	°C	55844	55,716	99.8
RH-5 Humidity %RH	%	55844	39,642	71.0
iPack Voltmeter	volts	55844	55,844	100.0

Anemometer data recovery

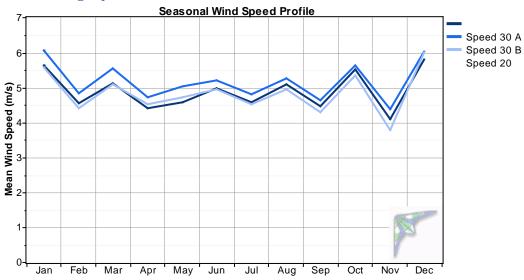
			30 m A		30	30 m B		20 m	
Year	Month	Possible	Valid	Recovery	Valid	Recovery	Valid	Recovery	
		Records	Records	Rate (%)	Records	Rate (%)	Records	Rate (%)	
2009	Jun	362	358	98.9	358	98.9	358	98.9	
2009	Jul	4,464	4,464	100.0	4,464	100.0	4,464	100.0	
2009	Aug	4,464	4,464	100.0	4,464	100.0	4,464	100.0	
2009	Sep	4,320	4,269	98.8	4,320	100.0	4,320	100.0	
2009	Oct	4,464	3,404	76.3	3,404	76.3	3,404	76.3	
2009	Nov	4,320	3,716	86.0	3,716	86.0	3,716	86.0	
2009	Dec	4,464	3,050	68.3	3,050	68.3	3,305	74.0	
2010	Jan	4,464	4,464	100.0	4,464	100.0	4,464	100.0	
2010	Feb	4,032	2,951	73.2	2,987	74.1	2,988	74.1	
2010	Mar	4,464	3,508	78.6	3,508	78.6	3,508	78.6	
2010	Apr	4,320	4,320	100.0	4,320	100.0	4,320	100.0	
2010	May	4,464	4,464	100.0	4,464	100.0	4,464	100.0	
2010	Jun	4,320	4,320	100.0	4,320	100.0	4,320	100.0	
2010	Jul	2,922	2,802	95.9	2,802	95.9	2,802	95.9	
All da	ita	55,844	50,554	90.5	50,641	90.7	50,897	91.1	

Wind Speed

Wind data collected from the met tower, from the perspective of both mean wind speed and mean power density, indicates a rather low wind resource. The discrepancy in mean wind speed between the 30 m A and the 30 m B anemometer is due to the placement of the of the 30 m A anemometer at 179° True. With frequent NNE winds, the 30 m A anemometer experienced some tower shadowing effects.

Note that it can be problematic analyzing wind data with concentrated data loss, such as occurred in Anaktuvuk Pass during a few of the winter months. To correct this problem, synthetic data was inserted in the data gaps to create a more realistic wind speed data profile. To be sure, long segments of

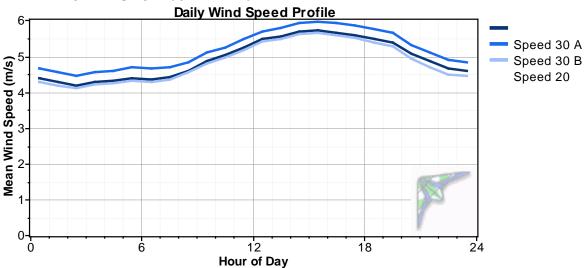
synthetic data introduce uncertainty to the data set, but missing data does as well. To overcome this uncertainty, improved data collection with heated sensors would be necessary.


Anemometer summary

	Original data set			Synthesized data set		
	Speed	Speed	Speed	Speed	Speed	Speed
Variable	30 A	30 B	20	30 A	30 B	20
Measurement height (m)	30	30	20	30	30	20
Mean wind speed (m/s)	4.91	5.19	4.86	4.94	5.20	4.85
Max 10-min avg wind speed (m/s)	18.5	18.8	18.9			
Max gust wind speed (m/s)	20.4	20.8	21.2			
Weibull k	1.78	1.88	1.80	1.76	1.85	1.80
Weibull c (m/s)	5.47	5.78	5.40	5.53	5.82	5.42
Mean power density (W/m ²)	156	172	149	163	178	149
Mean energy content (kWh/m²/yr)	1,368	1,507	1,309	1,432	1,558	1,303
Energy pattern factor	2.13	1.99	2.09	2.19	2.05	2.11
Frequency of calms (%)	36.1	30.5	34.6	35.5	30.5	34.5
1-hr autocorrelation coefficient	0.863	0.861	0.857	0.860	0.858	0.854
Diurnal pattern strength	0.168	0.155	0.166	0.151	0.140	0.155
Hour of peak wind speed	16	16	16	16	16	16

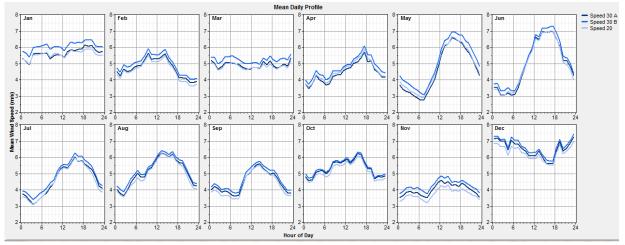
30m B data summary

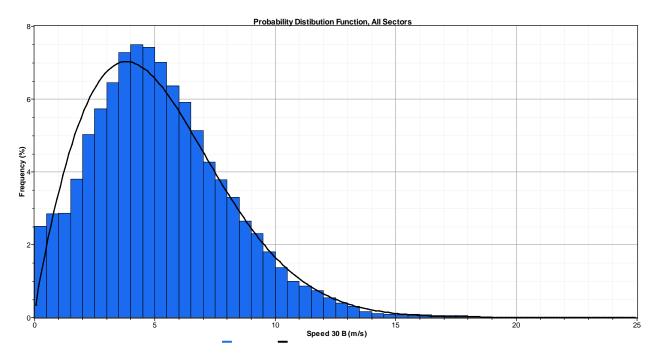
		-	Original D	ata		Synthesized Data		
			Max 10-					
Year	Month	Mean	min	Max gust	Mean	Std. Dev.	Weibull k	Weibull c
		(m/s)	(m/s)	(m/s)	(m/s)	(m/s)		(m/s)
2009	Jun	4.70	10.0	12.8	4.71	2.53	1.86	5.27
2009	Jul	4.51	13.3	18.9	4.51	2.61	1.74	5.05
2009	Aug	5.25	15.5	20.8	5.25	2.51	2.17	5.91
2009	Sep	4.63	12.0	15.5	4.63	2.40	1.95	5.19
2009	Oct	5.63	15.2	17.4	5.41	2.84	1.97	6.09
2009	Nov	4.39	14.2	18.1	4.26	2.81	1.57	4.76
2009	Dec	6.04	18.8	20.0	6.68	3.95	1.74	7.49
2010	Jan	6.07	15.1	18.9	6.07	2.85	2.25	6.86
2010	Feb	4.85	14.1	17.4	4.95	2.56	1.99	5.57
2010	Mar	5.55	16.3	17.4	5.24	2.62	2.08	5.90
2010	Apr	4.73	15.0	20.4	4.73	2.91	1.65	5.28
2010	May	5.03	14.0	17.4	5.03	2.67	1.94	5.65
2010	Jun	5.25	14.1	17.4	5.25	2.69	1.99	5.90
2010	Jul	5.31	12.6	15.9	5.29	2.59	2.11	5.95
Anr	nual	5.19	18.8	20.8	5.20	2.87	1.85	5.82



Daily Wind Profile

The daily wind profile indicates significant variation of wind speeds throughout the day, with lowest wind speeds during the early morning hours and highest wind speeds during late afternoon hours when electric load is highest. This perspective is amplified when considering monthly views of daily profiles as even more variation is observed.

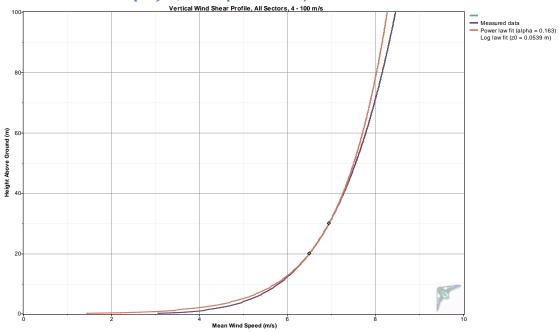



Time series graph

Monthly daily wind profile (synth. data)

Probability Distribution Function

The probability distribution function (or histogram) of wind speed indicates a near-normal shape curve of wind speeds (defined as the Raleigh distribution, k=2.0).



Wind Shear and Roughness

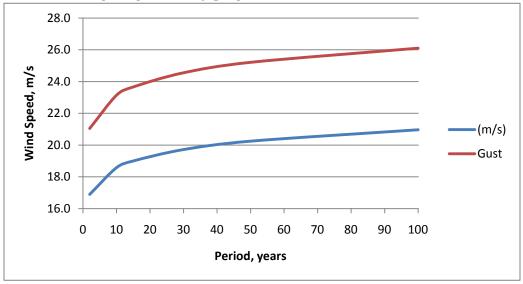
A wind shear power law exponent of 0.163 indicates moderate wind shear at the site; hence it is likely cost effective and advantageous to build wind turbines at the highest hub height practicable, construction cost considerations notwithstanding. Related to wind shear, a calculated surface roughness of 0.0021 meters (indicating the height above ground level where wind velocity would be zero) indicates

relatively smooth terrain (snow surface and lower terrain) surrounding the met tower, especially toward the prevailing wind direction of north to north-northeast.

Wind shear by direction sector, wind speeds > 4 m/s

	Time	Sector Wind	Mean Wind Speed (m/s)		Best-Fit Power Law	Best-Fit Surface Roughness
Direction Sector	Steps	(%)	Speed 30 B	Speed 20	Exp	(m)
348.75° - 11.25°	8,610	27.3%	5.86	5.49	0.163	0.0530
11.25° - 33.75°	8,306	26.4%	7.15	6.59	0.203	0.1790
33.75° - 56.25°	646	2.1%	6.76	5.99	0.299	0.8626
56.25° - 78.75°	28	0.1%	6.86	6.50	0.136	0.0155
78.75° - 101.25°	4	0.0%	6.45	6.43	0.010	0.0000
101.25° - 123.75°	24	0.1%	6.16	6.02	0.059	0.0000
123.75° - 146.25°	275	0.9%	7.10	6.91	0.067	0.0000
146.25° - 168.75°	3,918	12.4%	6.34	5.97	0.147	0.0265
168.75° - 191.25°	5,265	16.7%	6.49	6.05	0.173	0.0749
191.25° - 213.75°	3,205	10.2%	9.35	8.93	0.115	0.0040
213.75° - 236.25°	130	0.4%	6.92	6.66	0.094	0.0006
236.25° - 258.75°	13	0.0%	6.56	6.45	0.041	0.0000
258.75° - 281.25°	48	0.2%	8.03	7.78	0.077	0.0001
281.25° - 303.75°	58	0.2%	8.14	7.88	0.082	0.0001
303.75° - 326.25°	168	0.5%	6.55	6.33	0.084	0.0002
326.25° - 348.75°	799	2.5%	5.10	4.92	0.089	0.0003

Extreme Winds

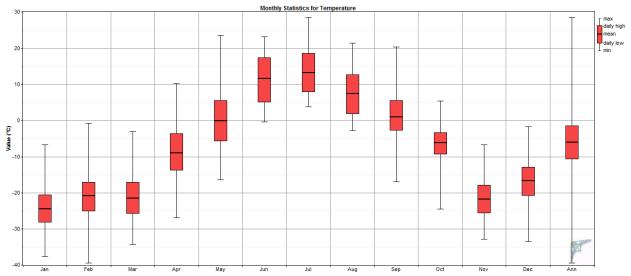

Although thirteen months of data is minimal for calculation of extreme wind probability, use of a modified Gumbel distribution analysis, based on monthly maximum winds vice annual maximum winds, yields reasonably good results. Extreme wind analysis indicates a very low probability of extreme wind events. This may be particular climactic aspects of Anaktuvuk Pass which include considerable distance from the windy sea coast and lack of exposure to Gulf of Alaska storm winds.

Industry standard reference of extreme wind is the 50 year, 10-minute average probable wind speed, referred to as V_{ref} . For Anaktuvuk Pass, this calculates to 20.2 m/s, well below the 37.5 m/s threshold of International Electrotechnical Commission (IEC) 61400-1, 3rd edition criteria for a Class III site. Note that Class III extreme wind classification is the lowest defined and all wind turbines are designed for this wind regime.

Extreme wind speed probability table

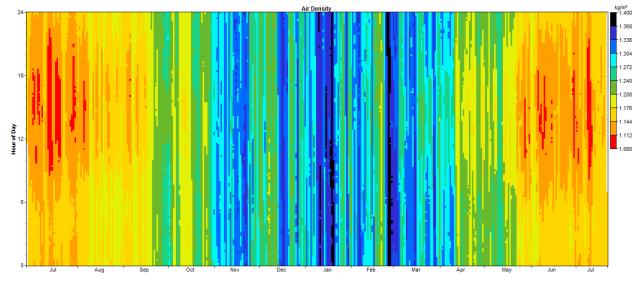
	V_{ref}	Gust	IEC 6140	0-1, 3rd ed.
Period (years)	(m/s)	(m/s)	Class	V _{ref} , m/s
2	16.9	21.0	I	50.0
10	18.6	23.1	П	42.5
15	19.0	23.7	111	37.5
30	19.7	24.6	S	designer-
50	20.2	25.2	3	specified
100	21.0	26.1		
average gust factor:	1.25			

Extreme wind speed probability graph

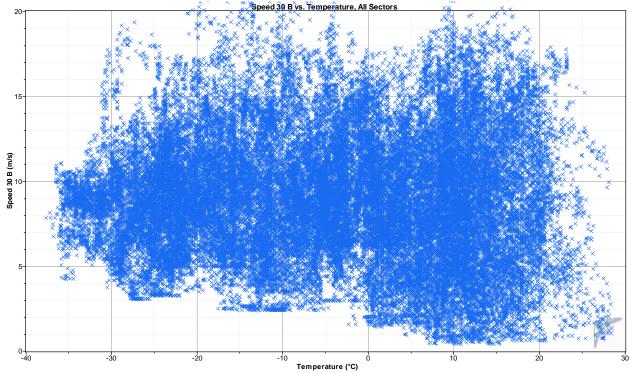

Temperature and density

Although Anaktuvuk Pass experiences warm summers, winter temperatures are very cold. The result is high air density; calculated air density exceeds standard air density for a 668 meter elevation (1.148 Kg/m³) by seven percent. This is advantageous in wind power operations as wind turbines produce more power at low temperatures (high air density) than at standard temperature and density.

	Temperature			Density		
	Mean	Min	Max	Mean	Min	Max
Month	(°C)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)
Jan	-24.3	-37.7	-6.7	1.312	1.224	1.385
Feb	-20.7	-39.5	-0.8	1.294	1.197	1.396
Mar	-21.5	-34.3	-3.1	1.296	1.207	1.365
Apr	-8.9	-27.0	10.2	1.235	1.151	1.325
May	0.0	-16.4	23.6	1.195	1.099	1.270
Jun	11.7	-0.4	23.1	1.145	1.101	1.196
Jul	13.3	3.7	28.5	1.139	1.081	1.178
Aug	7.5	-2.8	21.4	1.162	1.107	1.206
Sep	1.0	-17.0	20.3	1.190	1.111	1.273
Oct	-6.1	-24.5	5.3	1.222	1.171	1.311
Nov	-21.7	-32.8	-6.7	1.298	1.224	1.357
Dec	-16.6	-33.6	-1.8	1.272	1.202	1.361
Annual	-7.2	-39.5	28.5	1.230	1.081	1.396

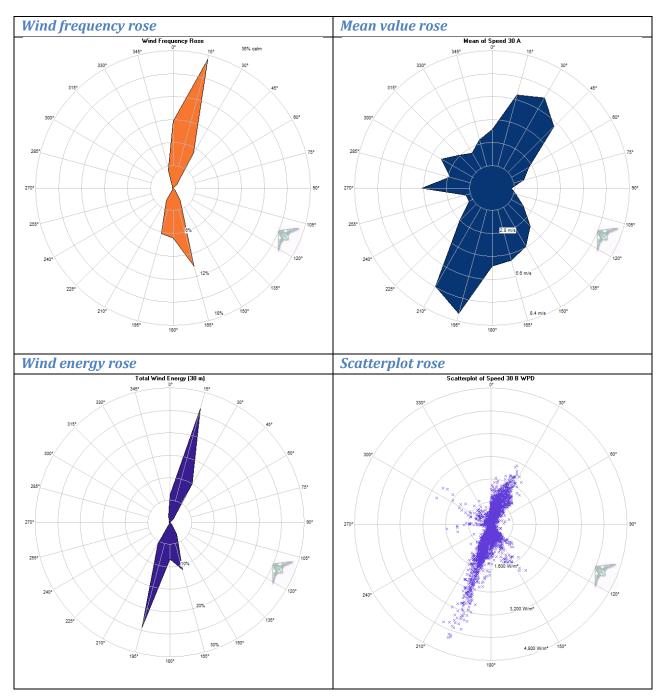

Temperature and density table

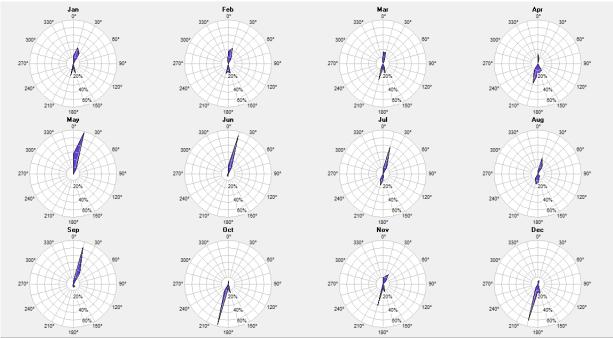
Monthly temperature boxplot


Air density DMap

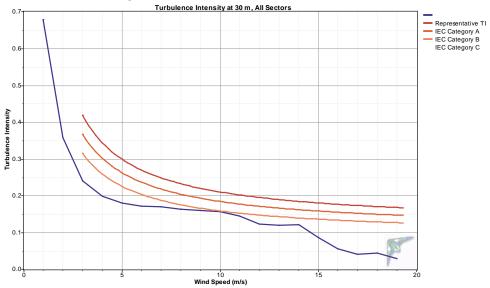
Wind Speed Scatterplot

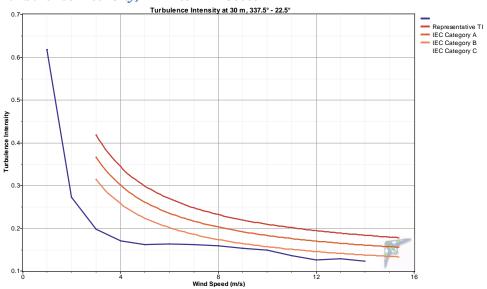
The wind speed versus temperature scatterplot below indicates that a substantial percentage of wind in Anaktuvuk Pass coincides with very cold temperatures, as one would expect give the location in the Brooks Range. During the met tower test period, temperatures did not fall below -40°C, the minimum operating temperature of arctic-capable wind turbines presently operating in Alaska.




Wind Direction

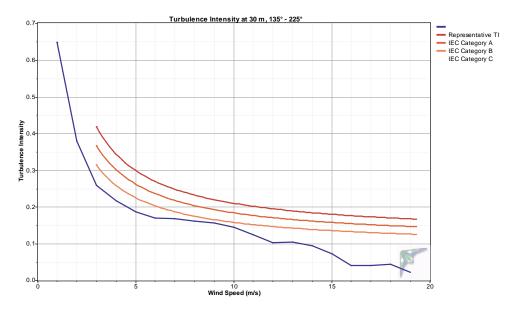
Wind frequency rose data indicates very highly directional winds entirely concentrated at 015° T and about 160° T to 200° T. Power density rose data (representing the power in the wind) indicates the winds are nearly exclusively directional at 020° T and 200° T, directly opposite each other. Calm frequency (percent of time that winds at the 30 meter level are less than 3.5 m/s) was 36 percent during the met tower test period.

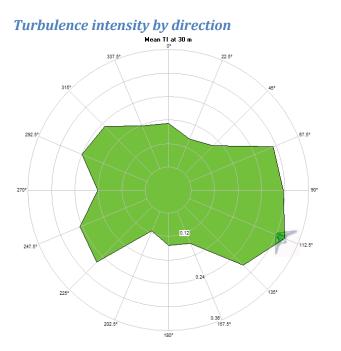

Wind density roses by month


Turbulence

To date, turbulence intensity is within acceptable standards with a classification of IEC (International Electrotechnical Commission) 61400-1, 3rd edition (2005) turbulence category C (lowest).

Turbulence intensity, all sectors





Turbulence intensity, NNW to NNE sector

Turbulence intensity, SW sector

Turbulence table

Bin	Bin Endpoints				Std		
Midpoint	Lower	Upper	Records		Dev. of	Representative	
(m/s)	(m/s)	(m/s)	in Bin	Mean TI	TI	TI	Peak TI
1	0.5	1.5	2,881	0.460	0.170	0.678	1.091
2	1.5	2.5	4,437	0.206	0.118	0.358	1.067
3	2.5	3.5	6,093	0.141	0.078	0.241	0.778
4	3.5	4.5	7,492	0.119	0.061	0.198	0.800
5	4.5	5.5	7,359	0.112	0.054	0.180	0.612
6	5.5	6.5	6,312	0.109	0.048	0.171	0.639
7	6.5	7.5	4,790	0.112	0.045	0.170	0.554
8	7.5	8.5	3,606	0.110	0.042	0.164	0.453
9	8.5	9.5	2,560	0.105	0.043	0.160	0.379
10	9.5	10.5	1,604	0.099	0.044	0.156	0.414
11	10.5	11.5	919	0.090	0.043	0.145	0.342
12	11.5	12.5	630	0.075	0.037	0.123	0.275
13	12.5	13.5	331	0.069	0.039	0.119	0.230
14	13.5	14.5	132	0.070	0.040	0.121	0.243
15	14.5	15.5	74	0.050	0.028	0.086	0.140
16	15.5	16.5	58	0.032	0.018	0.055	0.123
17	16.5	17.5	30	0.031	0.008	0.041	0.047
18	17.5	18.5	14	0.031	0.010	0.044	0.050
19	18.5	19.5	4	0.023	0.005	0.029	0.027

Airport ASOS Data

In 2005, Alaska Energy Authority (AEA) personnel analyzed the wind resource at all Automated Weather Observing Station (AWOS) and Automated Surface Observing System (ASOS) sites in Alaska. At most stations, AWOS/ASOS data has been collected for twenty-five or more years. Anaktuvuk Pass Airport (ICAO station identifier: PAKP) AWOS was installed in 1981.

The AEA report documents data from AWOS sensor, which is 9 meters above ground level. To compare this data to the met tower upper sensor height of 30 meters, the data was adjusted using an exponent extrapolation function with a power law exponent value of 0.14, which is more conservative than the 0.175 power law exponent calculated from met tower data and more typical of large open areas in Alaska.

Comparing to the met tower 30 meter B anemometer (both the collected data set and the synthesized data set), one can see that average wind speeds recorded by the met tower are higher than that predicted by the AWOS data. This would account for the higher wind class prediction of the met tower (Class 2) over the airport data (Class 1). The primary reason for this discrepancy is likely the superior elevation and exposure of the met tower compared to the AWOS sensors.

	Anaktuvuk Pass Airport		Met Tower, 30m B anem.	
	AWOS, 9 m	Data adj. to	Collected	Synthesized
	sensor	30 m	data	data
	(m/s)	(m/s)	(m/s)	(m/s)
Jan	4.1	4.85	6.07	6.07
Feb	4.2	4.97	4.85	4.95
Mar	3.9	4.62	5.55	5.24
Apr	3.8	4.50	4.73	4.73
May	3.7	4.38	5.03	5.03
Jun	3.7	4.38	5.21	5.21
Jul	3.5	4.14	4.82	4.82
Aug	3.7	4.38	5.25	5.25
Sep	3.5	4.14	4.63	4.63
Oct	3.6	4.26	5.63	5.41
Nov	3.8	4.50	4.39	4.26
Dec	4.0	4.73	6.04	6.68
Annual	3.8	4.49	5.18	5.19

Airport/met tower data comparison

