Buckland Wind Resource Report

By: Douglas Vaught, P.E., V3 Energy LLC, Eagle River, Alaska Date: September 17, 2010

Buckland met tower; D. Vaught photo

Contents

Summary	2
Test Site Location	2
Photographs	4
Data Recovery	4
Wind Speed	6
Time Series	6
Daily Wind Profile	7
Probability Distribution Function	8
Wind Shear and Roughness	10
Extreme Winds	10
Temperature and Density	11
Wind Direction	12
Turbulence	13

Airr	AWOS Data	5
· ••• ト		-

Summary

The wind resource measured at the new Buckland site is good with at mid-wind power Class 3. The met tower site experiences low turbulence conditions but is subject to storm winds that raise the probability of extreme wind events higher than one might otherwise expect from a Class 3 site. Met tower site selection (new site) in Buckland was based on results of a previous met tower study at a site immediately south of the village which showed very quiet Class 1 to 2 winds. The new site is more exposed and at a much higher elevation than the village but distant from the village compared to the previous site.

Met tower data synopsis

Data dates	June 11, 2008 to March 13, 2010 (21 months)
Wind Power Class	Mid Class 3 (fair)
Power density mean, 30 meters	302 W/m ²
Wind sped mean, 30 meters	5.58 m/s
Max. 10-minute wind speed average	39.6 m/s
Maximum wind gust	44.3 m/s (January 2009)
Weibull distribution parameters	K = 1.53, c = 6.22 m/s
Wind shear power law exponent	0.0717
Roughness class	0.00
Turbulence intensity, mean	0.082
IEC 61400-1, 3 rd ed. classification	Class II-C
Community profile	
Current Population:	432 (2009 DCCED Certified Population)
Incorporation Type:	2nd Class City
Borough Located In:	Northwest Arctic Borough
Taxes:	Sales: 6% (City), Property: None, Special: None
National Flood Insurance Program Participa	nt: Yes

Coastal Management District: Northwest Arctic Borough

Test Site Location

The met tower was located 7 km (4.5 miles) from the western edge of the village on a plateau of the first significant hill of a north-south trending boundary range of high hills separating the river drainage where Buckland is located from Seward Peninsula to the west. The site is at 143 meters elevation but a higher hill a few kilometers west is 430 meters high. Conveniently, the site is located immediately above a rock quarry constructed to upgrade the village airport and hence an excellent road exists across the marshy bottomland separating the met tower site from the village.

Site information

Site number
Latitude/longitude
Site elevation
Datalogger type
Tower type
Anchor type

5063 N 63° 57.724', W 161° 17.111' 143 meters NRG Symphonie, 10 minute time step NRG 30-meter tall tower, 152 mm (6 inch) diameter DB88 duckbill

Topographic map image

Google Earth image

Tower sensor information

Channel	Sensor type	Height	Multiplier	Offset	Orientation
1	NRG #40 anemometer	30 m (A)	0.765	0.35	110° T
2	NRG #40 anemometer	30 m (B)	0.765	0.35	305° T
3	NRG #40 anemometer	20 m	0.765	0.35	110° T
7	NRG #200P wind vane	30 m	0.351	220	040° T
9	NRG #110S Temp C	2 m	0.136	-86.383	Ν

Photographs

Installation crew; D. Vaught photo

Transporting tower parts to site; D. Vaught photo

Old met tower site in Buckland; D. Vaught photo

Raising the met tower; D. Vaught photo

Data Recovery

The quality of data from the (new) Buckland met tower was acceptable to describe the essentials of the wind resource, but unfortunately the temperature sensor never worked properly and data from it was deleted. Temperature data from the airport AWOS was substituted for this report. Also, the 30 meter B anemometer often exhibited odd behavior which necessitated deleted a higher percentage of its data than from the other sensors. For the remaining sensors, the relatively minor data loss was due to

apparent winter icing events. Although the met tower site is at an elevation potentially susceptible to rime icing conditions, rime ice does not appear to a factor in the data loss which likely is attributable to freezing rain and sleet conditions.

Data recovery summary table

			Possible	Valid	Recovery
Label	Units	Height	Records	Records	Rate (%)
Speed 30 m A	m/s	30 m	92,250	89,623	97.2
Speed 30 m B	m/s	30 m	92,250	83,390	90.4
Speed 20 m	m/s	20 m	92,250	89,919	97.5
Direction 30 m	٥	30 m	92,250	87,247	94.6
Temperature	°C		92,250	0	0.0

Anemometer data recovery

			30	m A	30 m B		20 m	
		Possible	Valid	Recovery	Valid	Recovery	Valid	Recovery
Year	Month	Records	Records	Rate (%)	Records	Rate (%)	Records	Rate (%)
2008	Jun	2,970	2,805	94.4	2,805	94.4	2,805	94.4
2008	Jul	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2008	Aug	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2008	Sep	4,320	4,320	100.0	4,320	100.0	4,320	100.0
2008	Oct	4,464	4,265	95.5	4,315	96.7	4,315	96.7
2008	Nov	4,320	3,463	80.2	3,548	82.1	3,590	83.1
2008	Dec	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2009	Jan	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2009	Feb	4,032	4,032	100.0	3,472	86.1	4,032	100.0
2009	Mar	4,464	4,464	100.0	3,626	81.2	4,464	100.0
2009	Apr	4,320	4,320	100.0	3,948	91.4	4,320	100.0
2009	May	4,464	4,271	95.7	3,848	86.2	4,464	100.0
2009	Jun	4,320	4,320	100.0	4,227	97.9	4,320	100.0
2009	Jul	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2009	Aug	4,464	4,464	100.0	4,230	94.8	4,464	100.0
2009	Sep	4,320	4,320	100.0	4,199	97.2	4,320	100.0
2009	Oct	4,464	4,464	100.0	4,464	100.0	4,464	100.0
2009	Nov	4,320	3,706	85.8	3,644	84.4	3,706	85.8
2009	Dec	4,464	4,418	99.0	3,781	84.7	4,464	100.0
2010	Jan	4,464	4,464	100.0	3,673	82.3	4,464	100.0
2010	Feb	4,032	3,479	86.3	2,604	64.6	3,359	83.3
2010	Mar	1,728	1,728	100.0	366	21.2	1,728	100.0
All data		92,250	89,623	97.2	83,390	90.4	89,919	97.5

Wind Speed

Wind data collected from the met tower, from the perspective of mean wind speed and mean wind power density, indicates a good wind resource for wind power development. Although not considered in the power density calculations because the temperature sensor was inoperative for the duration of the test period, the cold arctic winter temperatures in Buckland would increase wind power density above that reported below. Although not strictly necessary for this analysis, missing anemometer data was synthesized to illustrate a more complete wind profile, especially for the 30 meter B (channel 2) sensor. The synthetic data results in some curve smoothing, but does not significantly change the analysis.

	C	riginal Data		Synthesized data		
	Speed	Speed	Speed	Speed	Speed	Speed
Variable	30 m A	30 m B	20 m	30 m A	30 m B	20 m
Measurement height (m)	30	30	20	30	30	20
Mean wind speed (m/s)	5.65	5.27	5.51	5.64	5.64	5.50
Max 10-min avg wind speed (m/s)	39.2	39.6	38.0			
Max gust wind speed (m/s)	43.6	44.3	43.9			
Weibull k	1.53	1.67	1.54	1.53	1.55	1.54
Weibull c (m/s)	6.22	5.85	6.06	6.20	6.19	6.04
Mean power density (W/m ²)	302	210	278	300	293	275
Mean energy content (kWh/m²/yr)	2,646	1,842	2,432	2,629	2,567	2,409
Energy pattern factor	2.78	2.41	2.76	2.78	2.72	2.76
1-hr autocorrelation coefficient	0.895	0.867	0.893	0.894	0.892	0.893
Diurnal pattern strength	0.070	0.073	0.075	0.068	0.07	0.076
Hour of peak wind speed	17	17	16	17	17	16

Anemometer data summary

Time Series

As is the typical rule in Alaska, the Buckland met tower site experiences higher winds in the winter compared to summer. The higher winds of March and May compared to April are likely a measurement artifact that would smooth out with a multi-year data view.

30m A anemometer data summary

		Synth	Data Added					
			Max 10-min					Ratio: synth to original
		Mean	avg	Max gust	Weibull k	Weibull c	Mean	mean spd
Year	Month	(m/s)	(m/s)	(m/s)	(-)	(m/s)	(m/s)	(-)
2008	Jun	4.98	15.1	16.8	1.79	5.58	4.88	98.1%
2008	Jul	5.62	15.5	18.7	2.02	6.33	5.62	100.0%
2008	Aug	4.88	17.9	21.8	1.74	5.47	4.88	100.0%
2008	Sep	4.72	16.1	17.9	1.77	5.29	4.72	100.0%

2008	Oct	4.73	15.3	18.3	1.70	5.29	4.63	97.9%
2008	Nov	5.49	16.0	19.1	2.19	6.17	5.36	97.7%
2008	Dec	6.53	22.2	26.0	1.93	7.33	6.53	100.0%
2009	Jan	6.45	39.2	43.6	1.19	6.85	6.45	100.0%
2009	Feb	7.93	30.6	35.2	1.35	8.64	7.93	100.0%
2009	Mar	7.27	27.2	30.9	1.64	8.12	7.27	100.0%
2009	Apr	5.11	21.0	28.7	1.29	5.52	5.11	100.0%
2009	May	6.71	19.7	24.0	1.93	7.57	6.83	101.8%
2009	Jun	4.75	17.3	21.4	1.75	5.34	4.75	100.0%
2009	Jul	4.49	18.7	22.1	1.80	5.07	4.49	100.0%
2009	Aug	5.94	26.7	31.3	1.71	6.68	5.94	100.0%
2009	Sep	4.54	20.9	25.2	1.58	5.05	4.54	100.0%
2009	Oct	4.95	14.3	17.6	1.68	5.52	4.95	100.0%
2009	Nov	4.90	17.4	21.4	1.61	5.48	4.85	99.0%
2009	Dec	6.94	22.3	24.4	1.58	7.68	6.89	99.3%
2010	Jan	6.06	21.1	22.6	1.61	6.75	6.06	100.0%
2010	Feb	3.70	16.9	20.6	1.38	4.05	3.86	104.2%
2010	Mar	6.46	22.0	27.1	1.19	6.83	6.46	100.0%
MMM A	Annual	5.65	39.2	43.6	1.53	6.22	5.64	99.8%

Time series graph (synth. data)

Daily Wind Profile

The average daily wind profile in Buckland indicates somewhat significant diurnal variability of wind speeds throughout the day, with lowest wind speeds in the very early morning hours and highest wind speeds during late afternoon. This coincides nicely of course with typical electrical energy usage patterns.

Monthly-basis daily wind profile (synth. data)

Probability Distribution Function

The probability distribution function (PDF), or histogram, of the 30 meter A wind speeds indicates wind speed "bins" oriented toward the lower speeds compared to a normal wind power shape curve of k=2.0, otherwise known as the Raleigh distribution. Note in the cumulative frequency table below that 37.8 percent of the winds are less the 4 m/s, the cut-in wind speed of most wind turbines.

Cumulative frequency table

	, ,				I				
				Cum.					Cum.
Bin (m/s)		Freq.	Freq.	Bin (m/s)		Freq.	Freq.
Lower	Upper	Occurrences	(%)	(%)	Lower	Upper	Occurrences	(%)	(%)
0	1	5,911	6.60	6.60	21	22	100	0.11	99.8
1	2	7,092	7.91	14.5	22	23	54	0.06	99.8
2	3	9,654	10.77	25.3	23	24	33	0.04	99.8
3	4	11,219	12.52	37.8	24	25	20	0.02	99.9
4	5	10,815	12.07	49.9	25	26	28	0.03	99.9
5	6	10,152	11.33	61.2	26	27	23	0.03	99.9
6	7	8,801	9.82	71.0	27	28	21	0.02	99.9
7	8	6,848	7.64	78.7	28	29	11	0.01	100.0
8	9	5,013	5.59	84.2	29	30	5	0.01	100.0
9	10	3,725	4.16	88.4	30	31	5	0.01	100.0
10	11	2,855	3.19	91.6	31	32	6	0.01	100.0
11	12	1,983	2.21	93.8	32	33	2	0.00	100.0
12	13	1,306	1.46	95.3	33	34	3	0.00	100.0
13	14	992	1.11	96.4	34	35	5	0.01	100.0
14	15	894	1.00	97.4	35	36	3	0.00	100.0
15	16	665	0.74	98.1	36	37	2	0.00	100.0
16	17	478	0.53	98.6	37	38	1	0.00	100.0
17	18	330	0.37	99.0	38	39	1	0.00	100.0
18	19	238	0.27	99.3	39	40	1	0.00	100.0
19	20	194	0.22	99.5	A		89,623	100.0	100.0
20	21	134	0.15	99.6					

Wind Shear and Roughness

A wind shear power law exponent of 0.0717 indicates very low wind shear at the test site; hence wind turbine construction at a low hub height may be a desirable option. Related to wind shear, a calculated surface roughness of 9.08 EE-6 meters (the height above ground level where wind velocity would be zero) indicates extremely smooth terrain (roughness description: smooth) surrounding the met tower.

Extreme Winds

The relatively short duration of Buckland met tower data should be considered minimal for calculation of extreme wind probability, but nevertheless it can be estimated with a reasonable level of accuracy. Analysis indicates that Buckland experiences sufficiently robust storm and other high wind events to exceed IEC 61400-1, 3rd edition (2005), Class III criteria and hence classifies as an IEC Class II wind site.

Extreme wind speed probability table

	V _{ref}	Gust	IEC 6140	0-1, 3rd ed.
Period (years)	(m/s)	(m/s)	Class	V _{ref} , m/s
2	28.5	33.7	I	50.0
10	34.3	40.6	П	42.5
15	35.7	42.3	111	37.5
30	38.2	45.3	c	designer-
50	40.0	47.5	5	specified
100	42.5	50.4		
average gust factor:	1.18		-	

average gust factor:

Extreme wind probability graph

Temperature and Density

The temperature sensor on the met tower, for reasons not understood, did not work properly during the test period. Hence, temperature data from the Buckland airport AWOS are referenced below. This data represents a six year time period – July 2004 to July 2010. Air density was not directly measured, but calculated using standard pressure at eight meters (elevation of the airport) and the ideal gas law. Note that Buckland experiences a typical continental arctic climate with extremely cold winters and cool summers. On many occasions, temperatures colder than -40° C, the minimum operating temperature of arctic-rated wind turbines, were recorded. Of course, it is possible that the airport and village environs, due to inversion effects, experience colder temperatures than the higher elevation met tower site.

	Temperature			Air Density		
	Mean Min		Max	Mean	Max	Min
	(°C)	(°C)	(°C)	(kg/m³)	(kg/m³)	(kg/m³)
Jan	-22.4	-44.4	3.9	1.407	1.543	1.273
Feb	-20.1	-46.7	2.8	1.394	1.558	1.278
Mar	-18.9	-40.6	1.1	1.388	1.517	1.286
Apr	-10.0	-32.2	11.1	1.341	1.464	1.241
May	1.2	-17.8	21.1	1.286	1.381	1.199
Jun	10.1	-3.9	27.8	1.245	1.310	1.172
Jul	13.4	1.1	28.9	1.231	1.286	1.168
Aug	10.7	-2.2	27.2	1.243	1.302	1.174
Sep	5.5	-12.8	21.1	1.266	1.355	1.199
Oct	-4.3	-22.2	12.2	1.312	1.406	1.236
Nov	-14.8	-36.7	2.2	1.365	1.492	1.281
Dec	-15.3	-45.6	2.2	1.368	1.550	1.281
Annual	-4.1	-46.7	28.9	1.311	1.558	1.168

Temperature and density table

Temperature table, Fahrenheit and Celsius

-	-					1
	Temp (°F)			Temp (°C)		
	Mean	Min	Max	Mean	Min	Max
Jan	-8.3	-48	39	-22.4	-44.4	3.9
Feb	-4.1	-52	37	-20.1	-46.7	2.8
Mar	-2.1	-41	34	-18.9	-40.6	1.1
Apr	13.9	-26	52	-10.0	-32.2	11.1
May	34.2	0	70	1.2	-17.8	21.1
Jun	50.2	25	82	10.1	-3.9	27.8
Jul	56.2	34	84	13.4	1.1	28.9
Aug	51.3	28	81	10.7	-2.2	27.2
Sep	41.8	9	70	5.5	-12.8	21.1
Oct	24.3	-8	54	-4.3	-22.2	12.2
Nov	5.4	-34	36	-14.8	-36.7	2.2
Dec	4.5	-50	36	-15.3	-45.6	2.2
Annual	24.5	-52	84	-4.1	-46.7	28.9

Wind Direction

The wind frequency rose for the Buckland test site indicates predominately southeast and westnorthwest to north-northwest winds. Interestingly, though, although a minor frequency component, southwest winds, when present, are exceptionally strong. Integrating the two roses, one can see with the wind energy rose that predominate power winds are southwest and west-northwest with a lesser extent of southwest winds.

Turbulence

225

Turbulence intensity at the Buckland test site is well within acceptable standards for wind power development with an International Electrotechnical Commission (IEC) 61400-1, 3rd edition (2005), classification of turbulence category C, which is the lowest defined. Mean turbulence intensity at 15 m/s is 0.082.

18%

Turbulence intensity, all wind sectors

Turbulence table

Bin	Bin Enc	lpoints	Records	Standard			
Midpoint	Lower	Upper	In	Mean	Deviation	Representative	Peak
(m/s)	(m/s)	(m/s)	Bin	TI	of TI	TI	TI
1	0.5	1.5	6,284	0.436	0.170	0.653	1.286
2	1.5	2.5	8,398	0.238	0.125	0.397	1.063
3	2.5	3.5	10,723	0.162	0.086	0.271	0.840
4	3.5	4.5	11,024	0.135	0.070	0.225	0.821
5	4.5	5.5	10,542	0.119	0.059	0.194	0.851
6	5.5	6.5	9,696	0.107	0.050	0.170	0.500
7	6.5	7.5	7,803	0.102	0.045	0.159	0.412
8	7.5	8.5	5,846	0.099	0.041	0.152	0.407
9	8.5	9.5	4,316	0.096	0.040	0.147	0.441
10	9.5	10.5	3,287	0.093	0.037	0.140	0.379
11	10.5	11.5	2,430	0.090	0.035	0.135	0.342
12	11.5	12.5	1,595	0.087	0.032	0.127	0.244
13	12.5	13.5	1,108	0.088	0.033	0.130	0.228
14	13.5	14.5	940	0.084	0.030	0.122	0.353
15	14.5	15.5	789	0.082	0.030	0.121	0.260
16	15.5	16.5	568	0.078	0.029	0.115	0.261
17	16.5	17.5	398	0.073	0.024	0.103	0.171

18	17.5	18.5	265	0.072	0.024	0.103	0.178
19	18.5	19.5	213	0.071	0.025	0.104	0.229
20	19.5	20.5	159	0.070	0.027	0.104	0.181
21	20.5	21.5	132	0.066	0.025	0.098	0.145
22	21.5	22.5	75	0.071	0.028	0.107	0.207
23	22.5	23.5	36	0.069	0.020	0.095	0.124
24	23.5	24.5	26	0.059	0.018	0.081	0.115
25	24.5	25.5	24	0.056	0.018	0.078	0.102
26	25.5	26.5	27	0.049	0.007	0.058	0.066
27	26.5	27.5	25	0.052	0.011	0.065	0.071
28	27.5	28.5	15	0.058	0.010	0.070	0.074
29	28.5	29.5	7	0.080	0.016	0.100	0.109
30	29.5	30.5	4	0.073	0.012	0.087	0.083
31	30.5	31.5	4	0.072	0.007	0.081	0.081
32	31.5	32.5	4	0.073	0.008	0.084	0.085
33	32.5	33.5	4	0.077	0.007	0.087	0.087
34	33.5	34.5	3	0.071	0.004	0.076	0.076
35	34.5	35.5	3	0.082	0.009	0.093	0.090
36	35.5	36.5	4	0.065	0.008	0.076	0.075
37	36.5	37.5	2	0.069	0.009	0.081	0.075
38	37.5	38.5	0				
39	38.5	39.5	2	0.060	0.001	0.062	0.061
40	39.5	40.5	0				

Airport AWOS Data

Analysis of Buckland airport AWOS wind speed data from July 2004 (date AWOS was installed) to July 2010 indicates that in general, the wind resource at the met tower site is significantly better than at the airport and presumably similar elevations in its vicinity. A trend of the AWOS data (see graph) indicates slightly decreasing average wind speeds from 2004 to 2010, but the time period is too short to be statistically significant enough to scale the met tower data against.

Airport/met tower data comparison

	AWOS, 10	AWOS data	Met tower
	m sensor	scaled to	30 m A
	(m/s)	30 m (m/s)	(m/s)
Jan	3.20	3.73	6.25
Feb	3.65	4.26	5.89
Mar	4.02	4.69	7.04
Apr	4.39	5.12	5.11
May	4.10	4.78	6.83
Jun	3.42	3.99	4.81

Jul	3.02	3.52	5.05
Aug	2.99	3.49	5.41
Sep	3.05	3.56	4.63
Oct	2.41	2.81	4.79
Nov	2.58	3.01	5.11
Dec	3.43	4.00	6.71
Annual	3.34	3.90	5.64

Page | 16

Buckland Airport AWOS wind speed graph

